
Going Vertical in Memory Management: Handling Multiplicity by Multi-policy
(Revised 2016-01-01)

Lei Liu1,2, Yong Li3, Zehan Cui2, Chengyong Wu1,2

 1Sys-Inventor Research Group, 2SKL, ICT, CAS; 3PITT
Corresponding Author: Lei Liu (liulei2010@ict.ac.cn)

 Abstract
Many emerging applications from various domains often
exhibit heterogeneous memory characteristics. When
running in combination on parallel platforms, these
applications present a daunting variety of workload
behaviors that challenge the effectiveness of any memory
allocation strategy. Prior partitioning-based or random
memory allocation schemes typically manage only one level
of the memory hierarchy and often target specific workloads.

To handle diverse and dynamically changing memory and
cache allocation needs, we augment existing “horizontal”
cache/DRAM bank partitioning with vertical partitioning
and explore the resulting multi-policy space. We study the
performance of these policies for over 2000 workloads and
correlate the results with application characteristics via a
data mining approach. Based on this correlation we derive
several practical memory allocation rules that we integrate
into a unified multi-policy framework to guide resources
partitioning and coalescing for dynamic and diverse multi-
programmed/threaded workloads. We implement our
approach in Linux kernel 2.6.32 as a restructured page
indexing system plus a series of kernel modules. Extensive
experiments show that, in practice, our framework can
select proper memory allocation policy and consistently
outperforms the unmodified Linux kernel, achieving up to
11% performance gains compared to prior techniques.

1. Introduction
Efficient management of shared memory resources is
important for application performance and system
throughput. However, most existing memory and cache
management mechanisms used in commodity production
parallel machines adopt generic address-interleaving or
scheduling/partitioning approaches that are oblivious to the
diverse memory utilization characteristics and diverging
resources requirements in today’s heterogeneous
environments. This often results in inter-program
perturbation, resources thrashing, poor memory/cache
utilization, and, consequently, degraded performance.

Several recent solutions attempt to segregate applications
with different memory resources requirements by
horizontally partitioning either main memory (DRAM banks)
[10,16,17,29] or cache [15,24,30,31,32] into exclusive slices.
These approaches avoid interference for programs with
small memory footprints but might hamper performance of
larger workloads by effectively reducing capacity.
Partitioning and other memory allocation optimizations at
the OS level are more flexible, and it performs well in many

cases. For instance, given a multi-threaded workload,
randomly interleaving pages to distribute each thread’s
accesses across different DRAM banks [18] could reduce
row buffer conflicts, but does not address interference
among applications in multi-programmed workloads.
Therefore, it is desirable to design a memory management
system that can choose appropriate allocation policies by
distinguishing memory characteristics. To achieve this goal,
simply integrating the best performing mechanisms is
impractical as almost all state-of-the-art schemes requires
expensive changes to memory controllers/allocators or
cache hierarchies, not to mention the challenges in detecting
and predicting the application requirements and conflicts.
 To better meet the needs of diverse workloads and
leverage the architecture advantages, we propose a software
approach that simultaneously combines multiple allocation
strategies at different levels of the memory hierarchy (e.g.,
DRAM bank level [10,16,17] and cache set level
[8,15,26,31]). Enabling such vertical partitioning (through
the DRAM banks and cache at the same time) creates a
larger policy space from which the OS can choose.
Additionally, we use random allocation when no
partitioning method performs well. We integrate Horizontal
partitioning, Vertical partitioning, and a Randomized paging
policy (similar to Park et al.’s M3 [18]) to create HVR, a low
overhead, unified memory allocator that we implement in
the Linux kernel. HVR automatically selects component
policies dynamically based on different memory usage
scenarios detected by an online application classification
module that characterizes memory/cache behaviors.

To determine appropriate memory management policies
and address conflicting allocation preferences, we perform
more than 10,000 experiments for over 2000 workloads on
production machines with mainstream processor and
memory configurations. Based on a data mining approach to
analyze our results, we generate a set of practical
partitioning and coalescing rules together with a policy
decision tree to help HVR with automatic policy selection,
dynamic resources partitioning and coalescing. By
combining these policies on the fly, HVR can handle
diverse, complicated and dynamically changing memory
allocation needs in daily computing and production
environments where programs/jobs are launched and
terminated arbitrarily. We implement HVR in around 3000
lines of source code in Linux kernel 2.6.32. We summarize
our contributions below:
(1) Vertical partitioning (Section 3). Through a
quantitative study we identify limitations of existing
partitioning approaches. We leverage the overlapped bits

ISCA’14, June 14-18, 2014, Minneapolis, MN, USA.
978-1-4799-4394-4/14/ $31.00(c)2014 IEEE.

(O-bits) in the physical page address for indexing both
DRAM banks and cache sets to partition memory hierarchy
vertically, and achieve accumulated gains from multiple
horizontal partitioning methods.
(2) A multi-policy framework (Section 3). Based on O-
bits, we design an efficient, flexible and all-in-one
framework (HVR) that supports vertical partitioning,
horizontal partitioning and random allocation scheme. HVR
requires no hardware changes and performs well for both
multi-threaded and multi-programmed workloads.
(3) A low-overhead, page-table-based cache-profiling
module (Section 4). We develop an online module that
dynamically captures and categorizes application cache
utilization to assist appropriate memory allocation without
offline profiling or expensive performance counters.
(4) Data mining driven allocation rules (Section 5). By
adopting a data mining approach on extensive experimental
results of various policies and numerous workloads, we
derive a set of partitioning and coalescing rules used to
appropriately partition resources while allowing non-
interfering programs to live together for resource sharing.
(5) Real implementation in Linux kernel (Section 6). We
restructure the buddy system and rebuild the physical
page index in Linux kernel 2.6.32 to support all the
component policies and the partitioning/coalescing rules in
HVR. Dynamic application classification is implemented as
kernel modules. Our implementation adds around 3000 lines
of source code into the Linux kernel source tree.

 Our experiments on a real machine show that vertical
partitioning outperforms prior techniques [15,16]. Based on
the classification module and partitioning/coalescing rules
(90% accuracy verified by experimental results), HVR
brings consistent performance gains to the unmodified
Linux kernel and outperforms prior utility-based software
partitioning [15,16] by up to 11%. HVR also achieves
benefits for handling dynamic workload changes in real
production environments.

2. Background
2.1 Buddy Memory Allocation System
Today’s Linux operating system adopts a buddy system to
manage and allocate physical pages to various
applications in a low overhead and high efficient manner
[13,23]. The current buddy system maintains 11 free lists
with orders ranging from 0 to 10. The free list with order R
organizes pages as blocks and each block has 2R number of
continuous pages. Upon a memory allocation request, the
buddy system is responsible for identifying a free list with
an appropriate order and selecting one block from the free
list for allocation. One larger block with a higher order can
be split into smaller blocks of lower orders when
necessary. Buddy system aims to satisfy various memory
requests from diverse applications as generally and
efficiently as possible. To a considerable degree, the buddy
system achieves the goal in the single-core era.

Figure 1. Address mapping for cache and bank partitioning.

2.2 Page-Coloring Based Memory Management
Multicore architecture poses new system design and
optimization challenges, particularly on memory allocations,
since it allows all applications to share LLC (Last Level
Cache) and DRAM banks, resulting in severe contention in
many cases. Previous research efforts [12,29] show that
contention can significantly degrade the overall system
performance and many solutions have been proposed to
mitigate the contention problems.
 One of the most effective optimizations is the page-
coloring based software partitioning, which allows an OS
kernel to leverage the underlying architecture information
such as the physical address mapping of LLC and DRAM.
With page-coloring, one can mitigate the contention
problem [4,10,15,17,21,22,24,26] by modifying the kernel
buddy system while avoiding expensive hardware changes
to memory controllers or cache hierarchies.

Conventionally, there are two page-coloring based
partitioning techniques, namely the cache partitioning and
DRAM bank partitioning. As shown in Figure 1, cache
partitioning can be achieved by using the bits in the OS
physical page address that denote LLC set index (LLC color
bits) as color bits. When allocating a page for an application,
OS can assign a physical page with a specific color so that
the application can only access the cache sets with the
assigned color. Recent studies [10,16,17] utilize page-
coloring to partition DRAM banks as there are also bits in
the physical page address that denote DRAM bank address.
The difference is that the bank color bits in physical page
address might be distributed on some platforms. Figure 1
illustrates bank partitioning using page-coloring.

3 Memory Allocation Policies
In this section we study a number of existing allocation
approaches and introduce our new methods to expand the
memory allocation policy space. Based on a performance
analysis of these policies we identify several memory
allocation challenges and opportunities, which will be
discussed in the later sections.
3.1 Horizontal and Vertical Partitioning
Traditional partitioning policies such as those mentioned in
Section 2.2 are horizontal in that they partition either cache
or main memory (DRAM banks) in one dimension. With the
page-coloring technique the horizontal partitioning can be
implemented by selecting bank or cache indexing bits as
colors when allocating a page. Our detailed architectural

Figure 2. Address mapping from the view of OS and three
categories of color bits on a typical multicore machine.

study reveals that the coloring bits can be classified into
three categories: bank-only bits (B-bits), cache-only bits
(C-bits) and overlapped bits (O-bits index both bank and
cache in Figure 1). In particular, the O-bits enable a vertical
partitioning (VP) that partitions both cache and memory
banks, vertically through the memory hierarchy. Combining
horizontal and vertical partitions forms a previously
unstudied partitioning policy space. Assume, for example,
there are L B-bits, M C-bits and N O-bits, we can use i B-
bits, j C-bits and k O-bits to generate a partitioning policy
represented as (i,j,k), where 0 ≤ i ≤ L, 0 ≤ j ≤ M and 0 ≤ k ≤
N (value 0 is valid).

 Figure 2 illustrates the three categories of coloring bits
on a typical machine (Intel i7-860 with 8GB memory and 64
banks, B-bits: 21~22; C-bits: 16~18; O-bits: 14~15. An
arbitrary coloring bit distribution depends on specific
cache/memory configuration and can be detected by the
approach presented in [16,18]). Actually, The 13 bit denotes
bank, LLC and also L2 cache index, but we will not use it in
partitioning since we do not want L2 cache to be partitioned.
Table 1 lists six representative policies derived by these
coloring bits. Each policy partitions certain resources (i.e.,
cache, memory or both) to a different extent and thus
performs best in a certain scenario. For example, A-VP uses
the two O-bits to partition both LLC and memory banks into
four colors (groups) thus it is suitable for applications with
modest memory/cache demands as only one fourth of the
LLC and DRAM banks can be used with one color assigned.

3.2 Going Vertical?
Prior efforts [8,10,15,16,17,26,29,30,31] demonstrate that
horizontal partitioning on memory or LLC is effective in
eliminating inter-program interference and improving
performance. With vertical partitioning and, more generally,
our partitioning policy space, one important question is
whether the benefits from the horizontal memory and
cache partitioning can be accumulated (i.e., should we go
vertical in partitioning?).

To answer the above questions, we investigate over 200
random workloads composed of programs from SPECCPU
2006 [1]. This experiment includes two steps. In the first
step, for each workload we run multiple experiments to
obtain the performance gains of that workload on horizontal
partitioning. The performance improvements are compared
against the unmodified Linux kernel as the baseline. All of
the experimental results are reported in the four-
quadrant Cartesian plane in Figure 3. The horizontal axis
and vertical axis represent the weighted speedup (see
Section 7) improvements achieved through the Bank-only
and Cache-only partitioning, respectively. Workloads that

Figure 3. Performance improvement of Cache- and Bank-Only
partitioning for 214 workloads. Green dots: 4-programmed; Red
dots: 8-programmed; Blue squares: A-VP friendly; Black triangles:
B-VP friendly; Brown circles: C-VP friendly. Note that the metric
of overall system performance is Weighted Speedup which is
defined in Section 7.1.

contain 4 or 8 programs are denoted as 4/8-programmed
workloads. From Figure 3 we can see about half of the
tested workloads fall into Quadrant I. For these workloads,
both Cache-Only policy and Bank-Only policy bring certain
levels of performance improvements.
 In the second step, we randomly select tens of workloads
in the Quadrant I and use A, B and C-VP on them. We find
that these workloads (i.e., those highlighted by blue squares,
black triangles and brown circles) achieve optimal
performance with one of the VP policies, indicating that
their performance benefits accumulate to a certain degree
due to the vertical partitioning on both cache and main
memory banks. Shown in Figure 3 Quadrant I, different
symbols denote workloads with different properties. For
example, blue squares represent A-VP friendly workloads,
which achieve the best performance with A-VP policy.

Quadrant IV contains workloads for which bank-only
partitioning is beneficial while cache-only partitioning is
detrimental. We study workloads in this quadrant and find
that the performance benefits achieved by bank partitioning

Policy Coloring Bits Description Target Cores

Cache-Only C-bits {16~18} LLC à 8 groups 4/8-core
Bank-Only B-bits {21~22} Banks à 4 groups 4-core

Bank-Only B-bits {21~22}
O-bits {15}

LLC à 2 groups
Banks à 8 groups 8-core

A-VP O-bits {14~15} LLC à 4 groups
Banks à 4 groups 4-core

B-VP B-bits {22} +
O-bits {14~15}

LLC à 4 groups
Banks à 8 groups 8-core

C-VP C-bits {16} +
O-bits {14~15}

LLC à 8 groups
Banks à 4 groups 8-core

Table 1. Six representative partitioning policies.

Ⅱ Ⅰ

Ⅲ Ⅳ

Figure 4. Normalized performance slowdown with different
LLC capacity.

are largely offset by the side effect of cache partitioning (VP
is not useful). Thus, for workloads in this quadrant, it is
desirable to disable cache partitioning and enable bank
partitioning. There are few workloads in Quadrant II and
Quadrant III, indicating that bank-only partitioning does not
bring negative impact under most of the cases.

3.3 Random-Interleaved Allocation (Multi-threaded)
Although the above analysis demonstrates that various
partitioning policies achieve different levels of performance
gains, there are cases where none of the partitioning-based
memory allocation is preferred. One important scenario is
that the running workload exhibits heavy data sharing,
which defeats the purpose of any resource partitioning
mechanism [16]. For example, multi-threaded workloads
typically share considerable amount of data and thus
multiple threads access the same memory or cache bank
regardless whether the memory/cache is partitioned or not.
 To optimize multi-threaded workloads, the recently
proposed M3 [18] enforces a random-interleaved page
allocation to avoid hot spots and row buffer conflicts on
heavily shared banks. We conducted experiments and
verified that the random memory allocator outperforms
partitioning-based approaches for multi-threaded workloads.
Therefore, to handle multi-threaded workloads, we integrate
a randomized page-interleaving scheme to achieve similar
effects of M3 in our framework (see Section 6.2).

An obvious conclusion can be drawn from the above
presented quantitative study is that the effectiveness of a
memory allocation policy depends on specific application
characteristics, in particular the cache requirements. In
practice, a workload could contain several simultaneously
running applications with an arbitrary combination of
diverse characteristics, making the task of determining an
appropriate memory allocation challenging.

4. Application Classification
Determining an advantageous memory allocation policy
requires an accurate prediction of a running workload’s
memory/cache characteristic and its reaction on each
allocation policy. Based on our experiments we find that

most multi-programmed workloads are not negatively
affected by a modest bank-partitioning (<= 8 groups)
scheme. By contrast, the performance of cache partitioning
exhibits great variations due to different cache utilization
behaviors of the running workloads (in Figure 3).
 In order to verify the potential impact of cache utilization
characteristics on cache partitioning policies, we collect
performance slowdowns of various applications as the cache
quota is reduced from 8/8 (entire cache is used) to 1/8. Each
application is executed eight times and each time a different
amount of LLC is assigned by the page-coloring based
cache partitioning. Based on the results we classify
applications’ caching behaviors into four categories: Core
Cache Fitting (CCF), LLC High (LLCH), LLC Middle
(LLCM) and LLC Thrashing (LLCT). Figure 4 reports the
classification of various benchmarks in the SPEC2006
benchmark suite [1]. CCF applications (denoted as green
curves), such as hmmer and namd, do not degrade
significantly when using fewer LLC resources since their
working set sizes are small enough to fit into the L1 and L2
per-core private caches. LLCT applications (black curves),
such as libquantum, are also insensitive to cache quotas, but
due to cache thrashing behavior rather than small working
set sizes. LLCH applications (red curves) such as mcf suffer
the worst performance degradations from reduced cache
quotas due to their resource hungry characteristics.
Compared to LLCH, LLCM (blue curves) applications use
fewer cache resource, thus the slowdowns are not as much
as LLCH applications. For example, gcc and bzip2 are
LLCM as they suffer no significant degradation when cache
decreases from 8/8 to 4/8. However, a sharp performance
drop is observed when cache quota drops below 3/8.

4.1 Dynamic Classification
The static profiling approach used to generate Figure 4
requires multiple experiments for each application running
and does not capture dynamically changing behavior. To
predict cache requirement on the fly we explore the synergy
between application page accesses and cache utilization.
The key insight is that the number of hot pages (active
pages used in a particular time interval and can be identified
by the access bit [26,27] in the page table entry (PTE)) can
reflect an application’s LLC demand in many cases due to
the DRAM row-buffer locality [19]. Figure 5 shows the
correlation between number of hot pages and cache
demands for several benchmarks. Taking hmmer as an
example, the number of hot pages (denoted as red box) is
extremely low (at most 19 hot pages over the entire
sampling period). This indicates that a maximum amount of
19×4KB (4KB per page) cache resource is needed during
the sampling period. Additionally, we test all benchmarks in
SPECCPU 2006 in our experiments, but we only show
several of them in Figure 5 due to the space problem.

To this end, a simple estimation of LLC utilization can be
achieved by dividing the number of hot pages (NHP) by the
number of pages the LLC can accommodate (NPC). This

metric (NHP/NPC) represents the percentage of LLC
occupied by hot pages and is shown as the cache fitting
curve in Figure 5 (vertical axis on the right side of each sub-
figure). In the case of hmmer, less than 1/8 of the LLC is
required, indicating a CCF classification. A sharp
comparison is mcf, which is classified as LLCH since it has
large amount of hot pages (1143 to 15813) that cannot be
accommodated in most modern computers’ LLC (e.g., 8M).
For an LLCM application (e.g., bzip2), the number of hot
pages falls between that of the LLCH and CCF application
and the required LLC quota typically varies between 1/4 and
1/2. For an application that touches a large number of pages
but exhibits very poor reference locality (i.e., some CCF
applications such as sjeng visit many hot page but only a
small amount of them are heavily accessed and benefit from
being cached), using only the number of hot pages will
mislead the above simple method to a wrong classification
of LLCM or LLCH. To address this issue, we define
weighted page distribution (WPD), a metric used to reflect
page reference locality and can be obtained by per-page
access counters (detailed in Section 4.2). Based on the
above analyses, we devise an online application
classification algorithm detailed next.

4.2 Classification Algorithm
Figure 6 illustrates the classification process where two
tasks, JOB1 and JOB2, are launched in parallel. JOB1 is
responsible for collecting the number of hot pages. Its
sampling time interval is 3s in our system and the sampling
duration in each interval is 10μs. Our experiments show that
10μs is enough to collect sufficient information while incurs
negligible overhead. During each sampling JOB1 first clears
__access_bit by the pte_mkold() kernel function, and then
collects the number of hot pages (__access_bit set to 1) at
the end of the sampling. Note that hot page numbers are
averaged over several sampling intervals to avoid temporary
spikes and reflect stable program behaviors.
 JOB2 uses an array of page access counters to record the
number of accesses for each page. Since the OS itself does
not frequently reset the __access_bit, once set by the CPU,

JOB2 employs a loop to periodically clear __access_bit and
collects the access information during this period. JOB2
incurs slightly more overhead than JOB1, but the amortized
overhead over the sampling time window (also 3s) is not
high since it switches to the sleep mode after iterating 200
times (the time cost is far less than 3s). Based on the page
access counters, JOB2 records the numbers of pages by
grouping the counter values into five ranges: VH [150, 200],
H [100, 150], M [64, 100], L [10, 64] and VL [1, 10]. For
example, M denotes the number of pages with a counter
value large than or equal to 64 but smaller than 100. Based
on the above information, the WPD is computed as:

𝑊𝑃𝐷 =
2×VH + 1.5×H + 1×M + 0.5×L + 0.1×VL

𝑎𝑙𝑙_𝑢𝑠𝑒𝑑_𝑝𝑎𝑔𝑒𝑠_𝑛𝑢𝑚
 ,

where all_used_pages_num is the total number of pages
accessed during a JOB2’s sampling period (200 iterations).
Moreover, we find that the total number of pages touched by
an LLCT application (e.g., libquantum in Figure 5) does not
show a great variation (<4% changes) during different
execution time windows (i.e., after 200 iteration in every 3s)
and it often generates more hot pages due to the memory
intensive feature compared with CCF, making it easily to be
identified. Based on the WPD metric to reflect reference
locality, the hot page number and a series of thresholds, we
devise a classification algorithm shown in Figure 6. The
values of ccf_threshold, hot_freq_threshold and
llch_threshold are 100, 10% and 1000, respectively.
 The constants in our algorithm (i.e., sampling interval,
weighted, thresholds, and etc.) are empirical values based on
the analyses of all programs from SPECCPU 2006 with
diverse memory features and a wide range of workloads
combinations. Thus, we conclude that our approach is cost-
effective, robust and may work well in many real cases.
These values can be adjusted as necessary in the conditions
of extreme environment changes.

5. Handling Multiplicity by Learning Rules
The application classification information obtained from the
mechanism introduced above only reflects the partitioning
preference for a single application, but the challenge of

 Figure 5. Applications’ hot pages and their demands for LLC capacity.

Figure 6. Online application classification algorithm. AVG(x)
computes the average of x in three consecutive intervals and
DIFF(x) returns the absolute value of the difference of x between
two adjacent intervals.

selecting an appropriate scheme for co-running applications
with an arbitrary combination of memory demands remains
unaddressed. To tackle this challenge, we adopt a data
mining approach to quantitatively study the impacts of
various memory allocation schemes on over 2000 workloads.
We summarize the outcome as a set of partitioning rules
and coalescing rules, which can be used to handle diverse
memory allocation needs for simultaneously running
applications in multicore systems.

5.1 Partitioning Rules
Given a multi-programmed or multi-threaded workload, our
first step is to select an appropriate memory allocation
policy. To achieve this we collect a large amount of
performance data from more than 10,000 experiments over
2000 workloads. For each workload, we use the framework
introduced in Section 4 to obtain a classification vector, a
notation to represent workload composition. For example,
the classification vector of the workload {libquantum, mcf,
bzip2, hmmer} is denoted as {<lib, LLCT>,<mcf, LLCH>,
<bzip2, LLCM>, <hmmer, CCF>}. We run each workload
with different policies and record the results as <cache-only:
x%>, <bank-only: y%>, <A-VP: z%>, etc., where x%, y%
and z% are performance improvements achieved by the
corresponding policies. Based on the correlation between
the classification vectors and the performance gains on
different policies, we draw several interesting conclusions.
First, almost all workloads that are combinations of LLCT
and other type(s) of applications perform best on C-VP or
A-VP. Second, a dominating percentage of workloads
containing LLCH but not LLCT perform best on bank-only
partitioning. Third, most workloads with LLCM but no
LLCT or LLCH applications achieve best performance
results with a modest cache partitioning scheme such as A-
VP and B-VP. We summarize the above conclusions by the
following three rules:
Rule-1: Workloads containing LLCT and other applications
(LLCH, LLCM, CCF) should use C-VP or A-VP (37.1%
support, 94.4% confidence1).

Figure 7. Memory allocation policy decision tree (PDT)

Rule-2: Bank-only partitioning should be used for
workloads with LLCH and LLCM applications but without
LLCT applications (34.3% support, 83.3% confidence).
Rule-3: A-/B-VP should be used for 4-/8-programmed
workloads with LLCM but no LLCT or LLCH applications
(23.8% support, 87.9% confidence).
 The above analyses and rules also imply a priority in
considering a memory allocation policy: LLCT > LLCH >
LLCM > CCF. This ordering indicates that LLCT is the
most “assaulting” type in that it brings negative impact for
virtually all the other types of applications while CCF is the
most susceptible classification and applications of this type
hardly affect other applications’ performance.
 These results can be also explained by architecture
knowledge. In particular, Rule-1 is likely to perform well on
any LRU (least recently used)-based caches since LLCT
applications are not well handled by the LRU policy [9] as
they waste other applications’ resource without being
benefited. Rule-2 and Rule-3 can be also explained from the
perspective of resource utilization.
 For multi-threaded workloads, recent research [16] shows
that bank partitioning only achieves slight performance gain.
Additionally, Park et al. [18] argues that a random page-
interleaved allocation scheme outperforms partitioning
schemes. We conducted experiments for multi-threaded (see
Section 7) workloads and verified their conclusion. Thus,
we add another rule for multi-threaded workloads:
Rule-4: Multi-threaded workloads should use random page
allocation policy.

Based on the four rules and their priorities relative to each
other, we generate a memory management policy decision
tree (PDT) shown in Figure 7. The PDT is useful for
choosing appropriate policies for diverse workloads.

5.2 Coalescing Rules
Despite the advantage in eliminating interference, a pure
partitioning based approach is not always preferable since it
limits the cache capacity and can harm the performance for
resource hungry applications (e.g., LLCH). To arrive at a
middle ground between partitioning and sharing, we extend

1Confidence and support are terminologies in data mining. In our work
support is defined as the proportion of workloads that contain the
specific types of applications in a rule; confidence indicates the
accuracy of that rule.

Figure 8. Free page list organization of Sub-system A in buddy
system. Sub-system A organizes pages by 2 O-bits (bit 14,15) and
one C-bit (bit 16). Thus, it contains 8 colors (000~111), and can
facilitate searching pages for A/C-VP policies.

the partitioning decision tree with several coalescing rules
that can be used to merge the partitioned resource quotas
among certain types of applications.

We collect performance data of cache-only partitioning
and represent the result for each workload as <(n×LLCT,
m×LLCH, p×LLCM, q×CCF), x%>, where n, m, p, q are the
numbers of applications of a certain type and x% is the
performance gain achieved by the cache partitioning. Based
on the results, we find that for almost all workloads that
contain LLCH or LLCM but no LLCT applications (n=0,
m+p>0) cache partitioning always hurts performance (x% <
0). Additionally, for the workloads containing only LLCT
applications (m=p=q=0, n>1), the improvement is quite
modest (x%<1%) and for CCF dominant workloads
(n=m=p=0, q>1) no obvious impacts are observed. Further,
we run multiple LLCT applications (lib.) together on 1/8
LLC capacity and find that the overall performance is
similar to the cases where they are partitioned or share the
entire cache. The same results are observed for CCF
workloads. Thus, we derive the following coalescing rules:
Rule-5: LLCH and LLCM applications should be coalesced
together to share the partitioned colors and cache quota
(support: 39.5%, confidence: 87.2%).
Rule-6: LLCT and CCF applications should be coalesced
respectively to share the partitioned colors and small cache
quota (support: 7.8%, confidence: 90.5%).

The above coalescing rules are important complements to
the partitioning rules for providing larger aggregate cache
capacity and reducing misses under a partitioned cache.
Coalescing might incur slightly higher bank contention
among applications, but the benefits exceed the negative
impact and HVR still performs well.

5.3 Combining Partitioning and Coalescing
In real production environments, applications can be
launched and terminated arbitrarily. This dynamically
changing workload composition can defeat any
predetermined policy selection method. Combining and
switching between partitioning and coalescing policies is
particularly useful for handling dynamic changes in the
running workloads. For example, several partitioned cache
quotas under C-VP can be dynamically coalesced to form a
larger aggregate quota for accommodating multiple non-

Figure 9. Free page list organization of Sub-system B. It
organizes pages by bank bits 13, 14, 15, 21 and 22, and contains 32
colors, facilitating searching pages for B-VP policies, bank-level
random or round-robin interleaving scheme.

conflicting applications launched in an arbitrary order (see
Rule-5 and Rule-6). On the other hand, a coalesced space
can be partitioned if an additional partition is needed when
an assaulting application (e.g., LLCT) is launched.

6. Supporting HVR in Linux Kernel
The previously presented classification framework is
implemented as kernel modules in the Linux kernel 2.6.32
in about 700 lines of source code. This section details our
modification to the kernel data structures and paging
algorithm to support the previously discussed policies and
the partitioning/coalescing rules in a unified system. We
implement HVR in roughly 3000 lines of source code over
the existing kernel source tree. We use a page-coloring
based scheme to re-organize all free physical pages. Our
modified kernel maintains two page indexing systems: sub-
system A and sub-system B. Sub-system A provides support
for A/C-VP while sub-system B supports bank-only, B-VP
and the random-interleaved page allocation policy. Note that
the same page typically has different colors in different sub-
systems. Section 6.3 introduces how sub-system A and B
live and work together in our modified kernel. Based on the
two sub-systems, we develop a hash-based searching
algorithm (see Pseudocode 1) to allocate a page in O(1) time.

6.1 Page Indexing Sub-system A
The indexing sub-system A is illustrated in Figure 8. As
Figure 8 shows, the Linux kernel buddy system maintains
free physical pages in orders of blocks from 0 to 10. Each
block in order-n contains 2n continuous pages. The three bits
used in sub-system A form a set of 8 colors (000~111), each
of which has a free page list in our modified kernel.

In order-0 (upper left corner of Figure 8), each block is an
individual page and the block list under a particular color is
a set of pages of that color. For example, the block list under
the green color in order-0 contains any free and non-
continuous page with the three coloring bits being 000.
Order-1 and order-2 are similar to order-0 except that two or
four pages in a block are continuous. Each block in order-3

Figure 10. An example of free page list expanding in sub-
system A and B

has 8 continuous pages and spans two colors since there is
one coloring bit (bit 14) within the offset of a block in
order-3. Similarly, each block in order-4 spans two coloring
bits (bit 14~15) and thus has four colors (16 pages), as
depicted in Figure 8. Since all the coloring bits are within a
block offset starting from order-5, blocks of order-5 and
above have in-block repeated 8-color (32 pages) patterns, as
shown on the right of Figure 8.

Sub-system A supports C-VP since it uses the same bits
(14~16) to organize the pages into different colors. It also
supports A-VP. From the perspective of A-VP, the bit 16 is
not a coloring bit thus the buddy system views two colors in
sub-system A with the same lower two bits to be the same
color (e.g., 111 and 011). The most significant coloring bit
(bit 16) is simply not considered when choosing a color in
the sub-system A page indexing structure. CASE 1 in
Pseudocode 1 shows how to select a page of a given color
from sub-system A.

6.2 Page Indexing Sub-system B
Sub-system B, shown in Figure 9, uses five bits (13~15, 21,
22), or 32 colors, to provides support for B-VP and bank-
only partitioning, since all these bits denote the DRAM
bank index. Within order-1, each block contains two
consecutive pages of the same color (the addresses of these
two pages only differ in bit 12). From order-2 to order-9
each block contains pages of more than one color since
continuous pages in these orders spread across multiple
colors. Order-10 is special in that each block spans 10 bits
of the page address (bits 12~21) and contains 1024
continuous pages. Thus, all the binary combinations of the
coloring bits 13, 14 and 15 form an 8-color 16-page group,
which alternate as the upper non-coloring bits (bits 16~20)
vary (220-16+1 = 32 groups). The bit 21 is also a coloring bit,
and this repeats the pattern of the 8-color 16-page
alternation with a different 8-color set. Thus, each block in
order-10 has a pattern of 2 × 32 8-color 16-page groups. The
bit 22, the lowest block address in order-10 and also a
coloring bit, repeats the above 2 × 32 group pattern with an
entirely different 16-color set in a different block. To choose
a page with a particular color in a certain order, we use the
algorithm shown in CASE 2 in Pseudocode 1.

In particular, in sub-system B, the random-interleaved
page allocation for multi-threaded workloads can be easily
achieved by randomly selecting pages in the order-0 free list.

Pseudocode 1: Hashing algorithm for selecting pages
Input: (1) order; (2) target_color Output: one page of target color
BEGIN
/*CASE 1: Physical pages organized based on bits 14~16*/
 IF using 14,15,16 bits THEN
 SWITCH (order)

case 0~2 3 4 5~10
colors_per_block = 1 2 4 8

 END SWITCH
 block_color = (target_color / colors_per_block) × colors_per_block;
 page_index = (target_color - block_color) × 4;
END IF

/*CASE 2: Physical pages organized based on bits 13~ 15, 21~22*/
IF using 13, 14, 15, 21, 22 THEN
 SWITCH (order)

case 0~1 2 3 4~9 10
colors_per_block = 1 2 4 8 16

 END SWITCH
 block_color = (target_color / colors_per_block) × colors_per_block;
 IF order is 10 AND the color bits are x1xxx THEN //The 4th bit is 1
 page_index = (target_color - block_color - 8) × 2 + (1 << 9);
 // As shown in Figure 9: 32 blocks × 8 colors = 1024 blocks
 ELSE page_index = (target_color - block_color) × 2;
 END IF

 END IF
 Expand color block (page_index, order)

// physical pages represented by "struct page" are in page[] array
// in Linux kernel.
RETURN page[page_index] and remove this page from free list.

END
* target_color is the color of the requested page.
* block_color is the color of the first page in a block.
* colors_per_block is the number of colors in a block.

Moreover, similar effect in M3 [18] can be also achieved by
allocating physical pages with the 32 colors (00000~11111)
in a round-robin fashion and interleaving the required pages
evenly across all banks to reduce potential bank conflicts.
Therefore, our framework, HVR, is able to support both
multi-programmed and multi-threaded workloads.

6.3 Consistency of Sub-systems
When a page is requested and removed from a free block list
in one of the two sub-systems, the corresponding entry in
the other sub-system should also be removed to keep the
consistency between the two sub-systems.

Given a color, the speed of searching its corresponding
free block list is vital and the operation should be low-
overhead. By default, a free page request is serviced by
order-0 if the free block lists under the requested color in
order-0 is not empty. When order-0 cannot satisfy a request,
block lists of higher orders are searched. In this scenario,
continuous pages are broken into lower order blocks (fewer
continuous pages), which will be inserted into the free block
lists of appropriate orders. This process is known as expand
in the kernel, shown in Figure 10.

Suppose a thread in sub-system B requires a page of gray
color and there is no gray page in order-0, 1 and 2, as shown
in Figure 10 (1). The system has to expand a large block of
8 consecutive pages in order-3 into one order-2 block (green
and orange), one order-1 block (yellow) and one order-0

 (a) 4-programmed workloads (A-VP performs best) .

(b) 8-programmed workloads (B-VP performs best).

(c) 8-programmed workloads (C-VP performs best).

block (gray), in addition to the gray page to service the
request. This is illustrated in Figure 10 (2). Since the
physical page needs to be removed in the other sub-system,
the expand process is triggered for sub-system A to remove
a red page in order-3, as shown in Figure 10 (2’). The red
page in sub-system A and the gray page in sub-system B are
associated with the same physical page. The following steps
(3) ~ (5) and (3’) ~ (5’) in Figure 10 show similar expand
processes as different pages are requested and how the two
sub-systems keep in sync with each other.

6.4 Implementation Complexity
Although the entire mechanism seems complicated, it is
relatively simple in implementation and efficient in
performance. In memory management module in Linux
kernel, each physical page is represented by a page
structure and linked into the buddy system by a list_head
structure based on the order member in the page structure.
We add two additional list_head structures, lruA and lruB,
to track locations of pages in sub-system A and sub-system
B, respectively. Every page structure is linked to sub-
system A by lruA and to sub-system B by lruB. Each
list_head item in the two sub-systems contains a pointer to
each other so that the two sub- systems can be synchronized
in O(1) time. The color(s) assigned to a particular process is
maintained by a color mask added to the task_struct
structure and used in the O(1) hash searching (Pseudocode 1)
for page allocation.

Figure 12. Performance of different policies as bandwidth
changes (the baseline is the unmodified Linux kernel).

6.5 Coalescing and Page Migration
The coalescing rules (Section 5.2) can be implemented by
assigning the same color mask to multiple applications (e.g.,
two CCF applications). When two or more applications are
coalesced, the color masks in their task_struct are identical
so that they share the same cache memory quota.
 A common issue associated with coalescing is that page
migration typically needs to be involved, which is expensive,
especially when invoked frequently. Migration is also
needed for application re-classification. To mitigate page
migration overhead we always enable bank-only
partitioning at the very beginning. Doing so rarely brings
negative impact (see Section 3.2) and avoids page
migrations due to a transition from a non-bank partitioning
to a bank partitioning policy. Our experiments also show
that by enabling bank-only partitioning as a baseline,
migrations can be greatly reduced upon transitions between
any two policies (with bank partitioning). Moreover, we use
lazy migration [15] in our framework to avoid unnecessary
migration. Doing these in practice greatly reduces the
number of pages need to be migrated (see Figure 16), and
thus reduce the overhead.

7. Evaluations
7.1 Experimental Methodology
Our experimental machine has a quad-core eight-thread
2.8GHz Intel i7-860 processor with 8MB 16-way LLC and
8GB 64-bank DDR3 main memory. The machine runs
CentOS Linux 5.4 with the kernel 2.6.32. We use SPEC
CPU2006 suite [1] for multi-programmed workloads and
PARSEC benchmark suite [2] for multi-threaded workloads.
All programs are compiled by gcc 4.4.3 with the -O3
optimizations. Similar to previous work, we use weighted
speedup [12] (WS) to measure system performance and
maximum slowdown (MS) [12] for fairness:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 (𝑊𝑆) =
𝑅𝑢𝑛𝑡𝑖𝑚𝑒!"#$%
𝑅𝑢𝑛𝑡𝑖𝑚𝑒!"#$!!!"

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛 (𝑀𝑆) = 𝑀𝑎𝑥
𝑅𝑢𝑛𝑡𝑖𝑚𝑒!"#$!!!"
𝑅𝑢𝑛𝑡𝑖𝑚𝑒!"#$%

Figure 11. Performance gains of A/B/C-VP.

Figure 13. Performance improvements of different schemes.

We compare several memory allocation schemes including
the unmodified paging system in the Linux kernel, utility-
based partitioning [15], DRAM bank partitioning [16],
random allocation [18] and our proposed HVR system.

7.2 Impact of VP Policies
Figure 11 shows that for workloads that benefit from cache-
only and bank-only partitioning (50 workloads in Quadrant I
of Figure 3), VP can accumulate the performance gains. For
these workloads, all A-/B-/C-VP achieve the optimal
performance. For instance, A-VP can achieve up to 16.7%
improvement over the baseline system, while 5.9% and 11.7%
over the cache-only and bank-only partitioning, respectively.
We also try the random-interleaved page allocation for these
multi-programmed workloads, and it performs worse than
the partitioning policies. Figure 12 summarizes the
performance and fairness improvements of various policies
based on an average of workloads in our experiments. To
demonstrate that the proposed scheme performs robustly
under different memory bandwidth, we change the memory
frequency from 1333 to 800MHz. Figure 12 illustrates that
on average all the three vertical partitioning policies
outperform the horizontal cache-only or bank-only
partitioning schemes. Particularly, A-VP achieves a nearly 6%
improvement over the cache-only partitioning and a 5%
gain over the bank-only partitioning. As bandwidth
decreases, the contention becomes more severe and the three
vertical policies can bring even larger improvements.
Therefore, we can draw conclusion that vertical partitioning
brings additional benefits over horizontal partitioning and is
a promising memory management mechanism for future
multicore systems with increasing bandwidth pressure.

7.3 Overall Performance
Section 7.2 shows that using the proposed VP policies can
bring performance gains over the unmodified kernel
memory allocation and prior schemes. This section reports
the effectiveness of HVR framework, which utilizes these
VP policies more flexibly based on the application
classification, partitioning and coalescing rules, to handle
diverse and dynamically changing workload characteristics
and behaviors in daily computing environments.

 Figure 14. Performance of multi-threaded workloads.
7.3.1 Dynamic Policy Selection
Our HVR framework can automatically select appropriate
memory allocation policies by collecting applications’
characteristics and searching a policy in the policy decision
tree. To demonstrate the superiority of HVR over the static
partitioning and prior utility-based partitioning [15]
approach we compare three mechanisms with the baseline
system. Static vertical partitioning (SVP) adopts A-VP for
4-programmed workloads and B/C-VP for 8-programmed
workloads. Utility-based VP (UVP) dynamically adjusts
cache partitioning based on cache misses monitored through
performance counters. Figure 13 reports the performance for
the three schemes over 50 randomly generated workloads
sorted by their performance improvements achieved by SVP.
In region 1, both SVP and UVP achieve negative
performance gain (up to -5.0%) over the baseline. In
contrast, HVR improves performance by up to 6.1% over
the baseline and 11% over SVP and UVP. A careful
analysis reveals that workloads in region 1 are primarily
LLCH dominate workloads, for which the cache partitioning
is detrimental. Thus, SVP and UVP policies are not suited
for these workloads. HVR achieves gains by automatically
identifying workload characteristics and selecting the bank-
only partitioning for these workloads.

In region 2, most workloads are 8-programmed ones with
LLCT applications. HVR outperforms SVP and UVP due to
resource coalescing. For instance, the workload 22’ contains
5 LLCT, 2 LLCH and 1 LLCM applications. HVR maps all
LLCT applications to 1/8 cache, thus the rest 7/8 cache
quotas are shared by LLCM and LLCH applications,
contributing to the improvement of system performance.

In region 3, in most cases, HVR also outperforms other
two approaches, since HVR is capable of selecting proper
VP policies and using coalescing rules. But for some
workloads, SVP (Static VP) performs slightly better (0.4%
better than HVR on average). By looking into workloads in
this region we find a high percentage of A/B-VP friendly
workloads containing multiple LLCM applications. Since an
LLCM application requires modest cache capacity and
typically maintains a steady rate of cache utilization, the
SVP avoids dynamic overhead as it determines the
partitioning policy only once at the very beginning by
offline profiling. By contrast, dynamic utility-based
approaches incur non-negligible overhead [15,26] that may
offset the partitioning gains due to expensive page
migrations induced by page re-coloring and performance

Figure 15. Real-time performance of HVR framework.

counter penalty. But, fortunately, HVR avoids offline
profiling and will not incur significant overhead due to the
page-table-based lightweight online profiling and the stable
classification approach. More details about overhead are
discussed in Section 7.4.
 As previously mentioned, performance benefits can be
achieved for multi-threaded workloads through adopting a
random-interleaved page allocation approach. In Figure 14
our experimental results show that the random-interleaved
page allocation policy outperforms B/C-VP policies for
various 8-threaded workloads. HVR supports random-
interleaved page allocation (see Section 5, Section 6.2, and
Figure 7), which is automatically selected for multi-threaded
workload based on the policy decision tree.
7.3.2 Performance for real-time Changing Workloads
Figure 15 reports real-time performance captured through
Intel processor’s IPC performance counters for cache-
partitioning, bank-partitioning and HVR. During the entire
testing span we inject applications of various kinds at
different times. In the meantime, previously launched
application may terminate upon completion. From the figure
we can see the performance of cache partitioning fluctuates
between 6% and -3%. At sampling time points 5,6, 9, 11, 26,
27 and 28 the performance of cache partitioning drops
below 0. This is because at these points LLCH applications
are launched and the performance degrades due to limited
cache resources. HVR avoids this degradation by
identifying these LLCH applications and then coalescing
resources for them. At time 16, HVR achieves peak IPC
performance improvement. This is the point where LLCT,
LLCH, LLCM and CCF applications are all running and
they are appropriately segregated to eliminate perturbation
while some of them are shared to use larger amount of
resources.
 Compared to HVR, bank-only and cache-only
partitioning approaches achieve modest gains (5% and 7%
worse than HVR, respectively) due to the inability of
selecting policies and coalescing resources dynamically.
Note that bank-only partitioning achieves relatively stable
performance over time and this trend is consistent with our
conclusion in Section 3 (see Figure 3).

Figure 16. Number of page migration operations.

7.4 Overhead and Discussion
Overhead of HVR comes from the following three sources:
(1). Page table sampling of JOB1 and JOB2 in the workload
classification process. The costs of page table traversal
depend on application’s memory footprint. In our
experiments, the time for page table traversal ranges from
5µs (povray) to 4.46ms (mcf). Thus, the amortized overhead
of JOB1 and JOB2 are negligible. Moreover, JOB2’s
sampling interval grows with an increasing step once it
collects sufficient information to complete the initial
classification process, and thus its overhead is further
reduced for long running workloads. In the worst case,
JOB2 only brings 0.6% overhead. For workloads with
extremely large memory footprint, a random sampling can
be adopted for a tradeoff between the sampling overhead
and classification accuracy.
(2). The page indexing in the modified buddy system. As
our page searching routine can allocate a page in O(1) time
and the synchronization between the two sub-systems is also
highly efficient, our modified kernel does not bring obvious
overheads (< 0.3% on average) during page allocation.
(3). Page migrations caused by re-coloring in dynamic
policy adjustment. Migrating a 4KB page costs around 3μs
on our platform. Fortunately, our approach does not incur
too many page migrations because it relies on stable
classification information that typically changes only when
an application starts or terminates. In our experiments, an
extreme case requires up to 400MB (100,000 pages) to be
migrated, and the time cost is around 30s. However, the
entire workload runs for more than 30 minutes and thus the
overhead is 1.7% at most. Moreover, since our mechanism
uses the lazy page migration [15] that only migrates a page
when necessary, the average overhead is less than 0.8%.
Figure 16 shows that under the extreme case our mechanism
migrates fewer pages than the utility-based approach, in
which the number of migrated pages fluctuate over time and
incurs higher migration overhead in practice.

8. Related Work
There is a large body of related work on cache and memory
allocation and partitioning. At the main memory level,
Prashanth et al. [29] proposes DRAM channel partitioning
that requires hardware and system modifications to
segregate data from different threads into different channels
to eliminate interference. Park et al. [18] adopt a random
allocation algorithm to scatter allocated pages to multiple
banks to avoid conflicts for multithreaded workloads. Liu et

HVR-Framework												UVP	

al. [16] use page-coloring to partition DRAM banks to avoid
contention of multiple programs. Kaseridis et al. [11]
propose bandwidth-aware memory sub-system management
for avoiding resource contention. Various approaches are
also proposed to manage LLC [5,8,14,15,20,31,32,33,34].
In particular, Qureshi et al. [32] design a utility-based cache
partitioning scheme that allocates appropriate cache
resources based on application miss rate monitored through
dedicated hardware. More recently, cache partitioning is
also adopted in heterogeneous GPU-CPU architectures to
promote fair resource sharing among CPU and GPU
applications [30], which exhibit drastically different
memory access characteristics. Other efforts
[3,9,12,15,25,28] classify workloads based on hardware
profiling, and then choose appropriate scheduling policies
for different classifications. OS-level approaches for
memory utilization monitoring [6,7,26,27] have also been
studied to provide knowledge for resource management.

9. Conclusions
We propose and implement a practical, unified, and efficient
multi-policy memory management framework named HVR
to address the challenge of allocating appropriate memory
resources for modern diverse applications. HVR seamlessly
integrates several existing schemes and new vertical
partitioning policies by leveraging O-bits and the page
coloring technique. Through a quantitative study on a large
quantity of experiments we verify that HVR can
automatically select appropriate policies based on
application needs and achieve over 10% performance
benefits compared to prior allocation methods in many cases.

Acknowledgments
We thank the reviews for their feedback. Lei Liu and
Chengyong Wu are supported by the 863 Program under
grant No. 2012AA010902, and 973 Program under grant No.
2011CB302504; the National Natural Science Foundation
(NSF) of China under grants No. 60873057, 60921002,
60925009, 61033009 and 61202055.

References
[1] Standard Performance Evaluation Corporation. Available from:

http://www.spec.org/cpu2006/CINT2006/.
[2] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The PARSEC

benchmark suite: Characterization and architectural implications. in
PACT. 2008.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-Thread
Cache Contention on a Chip Multi-Processor Architecture. in HPCA.
2005.

[4] S. Cho and L. Jin. Managing distributed, shared L2 caches through
OS-level page allocation. in MICRO. 2006.

[5] H. Cook, M. Moreto, S. Bird, K. Dao, D.A. Patterson, and K.
Asanovic, A hardware evaluation of cache partitioning to improve
utilization and energy-efficiency while preserving responsiveness. in
ISCA. 2013

[6] P.J. Denning, The Working Set Model for Program Behaviour.
Commun. ACM, 1968. 11(5).

[7] X. Ding, K. Wang, and X. Zhang. SRM-buffer: an OS buffer
management technique to prevent last level cache from thrashing in
multicores. in EuroSys. 2011.

[8] X. Ding, K. Wang, and X. Zhang. ULCC: a user-level facility for
optimizing shared cache performance on multicores in PPoPP. 2011.

[9] A. Jaleel, H.H. Najaf-Abadi, S. Subramaniam, S.C. Steely, and J.
Emer, CRUISE: cache replacement and utility-aware scheduling, in
ASPLOS.2012.

[10] M.K. Jeong, D.H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M.
Erez. Balancing DRAM locality and parallelism in shared memory
CMP systems. in HPCA. 2012.

[11] D. Kaseridis, J. Stuecheli, J. Chen, and L.K. John. A bandwidth-
aware memory-subsystem resource management using non-invasive
resource profilers for large cmp systems. in HPCA. 2010.

[12] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory
access behavior. in MICRO. 2010.

[13] K.C. Knowlton, A Fast storage allocator. Communications of the
ACM, 1996.

[14] J. Liedtke, H. Hartig, and M. Hohmuth. OS-controlled cache
predictability for real-time systems. in RTAS. 1997.

[15] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan.
Gaining insights into multicore cache partitioning: Bridging the gap
between simulation and real systems. in HPCA. 2008.

[16] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. in PACT. 2012.

[17] W. Mi, X. Feng, J. Xue, and Y. Jia. Software-hardware cooperative
DRAM bank partitioning for chip multiprocessors. in NPC. 2010.

[18] H. Park, S. Baek, J. Choi, D. Lee, and S.H. Noh, Regularities
considered harmful: forcing randomness to memory accesses to
reduce row buffer conflicts for multi-core, multi-bank systems, in
ASPLOS. 2013.

[19] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, and J.D. Owens.
Memory access scheduling. in ISCA. 2000.

[20] T. Sherwood, B. Calder, and J. Emer. Reducing cache misses using
hardware and software page placement. in ICS. 1999.

[21] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of
last-level cache polluters with an OS-level, software-only pollute
buffer. in MICRO. 2008.

[22] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared L2
caches on multicore systems in software. in WIOSCA. 2007.

[23] A.S. Tanenbaum, Modern Operating Systems. 3rd ed. 2008:
Pearson-Prentice Hall.

[24] A. Wolfe. Software-based cache partitioning for real-time
applications. in RCS. 1993.

[25] Y. Xie and G. Loh. Dynamic classification of program memory
behaviors in CMPs. in the 2nd Workshop on Chip Multiprocessor
Memory Systems and Interconnects. 2008.

[26] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page
coloring-based multicore cache management. in EuroSys. 2009.

[27] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S.
Kumar. Dynamic tracking of page miss ratio curve for memory
management. in ASPLOS. 2004.

[28] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared
resource contention in multicore processors via scheduling. in
ASPLOS. 2010.

[29] Muralidhara, S. Prashanth, L. Subramanian, O. Mutlu, M. Kandemir,
and T. Moscibroda. Reducing memory interference in multicore
systems via application-aware memory channel partitioning. in
MICRO 2011.

[30] J. Lee and H. Kim. TAP: A TLP-aware cache management policy
for a CPU-GPU heterogeneous architecture. in HPCA. 2012.

[31] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. in PACT. 2004.

[32] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition
shared caches. in MICRO. 2006.

[33] S. Srikantaiah, M. Kandemir, and Q. Wang. Sharp control:
controlled shared cache management in chip multiprocessors. in
MICRO. 2009.

[34] Y. Xie and G. H. Loh. Scalable shared-cache management by
containing thrashing workloads. in HiPEAC. 2010.

